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Abstract— In this paper, a novel repetitive control (RC) scheme
is presented and discussed. The general framework is the control
of repetitive tasks of robotic systems or, more in general,
of automatic machines. The key idea of the proposed scheme
consists in modifying the reference trajectory provided to the
plant in order to compensate for external loads or unmodeled
dynamics that cyclically affect it. By exploiting the fact that
uniform B-spline trajectories can be generated by means of
dynamic filters, the trajectory planning phase has been integrated
within an RC scheme that is able to modify in real time the
reference signal in order to nullify the tracking errors occurring
at the desired via-points. Because of this mechanism, the control
scheme is very suitable for the application to industrial plants
with off-the-shelf, unmodifiable controllers. Experimental results
obtained with a standard industrial manipulator both in joint
space and in workspace show the effectiveness of the proposed
method.

Index Terms— B-spline trajectories, iterative methods, learning
algorithms, repetitive control (RC), robotic manipulators.

I. INTRODUCTION

IN PRACTICAL applications, desired tasks are often repeti-
tive or cyclic in nature. This is particularly true in industrial

robotics and automatic machines, where many tasks simply
imply the continuous repetition of a given path. From a control
point of view, it is therefore required to track and/or reject a
periodic exogenous signal that can be considered known since
it refers to the planned trajectories or disturbances whose cycle
time is easily measurable or known in advance. In order to
improve the tracking accuracy, repetitive control (RC) repre-
sents a simple and effective method since it aims at canceling
tracking errors over repetitions by learning from the previous
iterations. RC was first developed by Inoue et al. [1], [2]
to improve the control of the power supply in a proton-
synchrotron accelerator but soon was applied to many other
different systems. Many surveys (see [3], [4]) report the
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successful use of RC in a number of applications, such as
high-accuracy trajectory tracking of servomechanism, torque
vibration suppression in motors, noise cancelation in power
supply, industrial robotics, and so on.

In this paper, a novel RC scheme is presented. The scheme
is based on a proper modification of the reference trajectory
for the plant, which is supposed to be already controlled by
an off-the-shelf controller. A similar idea has been already
proposed in the continuous-time domain in [5], where a two-
degrees-of-freedom local control, and a plug-in RC is used to
update the reference trajectory. The novelty of this paper lies
in the assumption that the reference trajectories are defined by
spline functions, which are de facto standard tools used in the
industrial field for planning complex motions interpolating a
set of given via-points [6]. Thanks to the possibility of gen-
erating B-spline trajectories by means of dynamic filters [7],
in the seminal works [8], [9], the trajectory planner has been
inserted inside a control loop that modifies in real time the
control points of the B-spline curve so that the tracking error
at the desired via-points converges to zero. The mechanism
for the control points’ modification induces a discrete-time RC
acting on the plant, along with the trajectory generator, which
works at a very low rate. Therefore, the proposed control
scheme, which has been directly developed in the discrete-
time domain, is characterized by a very low computational
complexity. Moreover, the application of this control scheme
is independent on the particular control law of the plant,
which is seen as a servo system that is able to track a
spline curve. As a consequence, the proposed approach can
be easily implemented as an outer feedback control loop,
which provides a reference input for the robotic system, able
to reduce the error at the given via-points below the level that
is already guaranteed by the standard robot controller. The
implementation of the proposed method is also supported by
very weak stability conditions that, for a given plant, only
depend on the duration of the trajectory and that, de facto, are
always met in case of position-controlled robot manipulators
and, more generally, in position-controlled electromechanical
systems.

In recent years, the use of B-spline functions combined with
learning mechanisms, such as RC, iterative learning control
(ILC), and similar others, has been widely adopted with the
purpose of reducing the complexity of the resulting controller
and increasing the robustness of the system. Note that B-spline
functions are the particular cases of basis functions, introduced
into the ILC to reduce the dimensionality of the input–output
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spaces of the controlled plant, by describing the command
and output signals as a linear combination of a relatively small
number of these basis functions [10]. The functions depend on
the original reference signal and the system dynamics or are
user-defined; for instance, in [11] and [12], the basis functions
are chosen starting from the plant dynamics; in [13] and [14],
the derivatives of the reference trajectory (position, veloc-
ity, acceleration, and so on) are considered; and in [15],
the basis functions are defined as the Legendre polynomials.
The B-spline functions are other notable examples of the user-
defined functions. They have been used in [16] and [17] to
parameterize a feedforward control term for improving the
position control of the robotic manipulators. The weights
defining the spline are adapted on the basis of the tracking
error with a learning algorithm, leading to the control scheme
called the desired compensation learning law [18]. In [19],
the output trajectory of the plant, in this case, a nanomanip-
ulation system, is decomposed in a number of shaping primi-
tives represented by B-spline functions, and then, an iterative
learning algorithm is applied in order to determine the control
input associated with each primitive. In [20], a spline function
is used to parameterize a signal that is added to the reference
input for a servo drive, and its parameters are determined by
means of a particle swarm-based repetitive compensator with
the purpose of reducing the tracking error from one iteration
to the next. Finally, the so-called B-spline networks, which are
the particular implementation of neural networks that utilize
the B-spline basis functions to store information, are combined
with the iterative learning mechanism to improve the tracking
performances of mobile robots [21], inverters [22], [23],
piezoelectric actuators [24], linear reciprocating vapor com-
pressors [25], and so on.

With respect to these methods, in which the B-spline func-
tions are the way to describe in a concise manner the control
signal, in the proposed approach, the B-splines represent the
form of the reference signals to be tracked; therefore, on the
one hand, they are subject to a number of constraints descend-
ing from the specific application, such as the order, the number
of control points, and the duration of the knot spans, but on the
other hand, they have a clear geometrical meaning, especially
when they are defined in the robot workspace.

Moreover, in the above-cited works, the order of the spline is
generally limited to small values because of the computational
burden due to the B-spline evaluation process, while the high
efficiency of the overall algorithm, due to the use of dynamic
filters for B-spline generation, is one of the most important
features of the proposed approach.

This paper is organized as follows. In Section II, a general
overview of the filters for B-spline generation is given both in
the continuous-time domain and in the discrete-time domain.
Then, in Section III, the proposed RC approach, based on
the B-spline filters, is illustrated, and a convergence analysis
is provided. This part of this paper incorporates the contri-
butions of the conference papers [8], [9], with corrections
and additions. In particular, the effects of the proposed RC
scheme on the trajectory provided to the robot are further
analyzed according to an ILC fashion, in which the index
denoting the current repetition is explicitly reported. In fact,

Fig. 1. 2-D B-spline trajectory interpolating a set of via-points q�i .

as often mentioned in the literature (see [4], [26], among many
others), RC and ILC are nearly equivalent design philosophies
apart from the settings of the initial conditions for each trial.
In our case, the RC formalism leads to a simpler control
scheme and to a straightforward stability analysis, but the ILC
perspective provides a very intuitive insight into the behavior
of the proposed control method.

Finally, the main contribution of this paper concerns the
experimental validation of the proposed controller on a
multidegrees-of-freedom industrial manipulator both in the
joint space and in the workspace (see Section IV). In particular,
in order to take into account the trajectory in the workspace,
the RC scheme has been adapted with respect to the basic
scheme by inserting the inverse kinematics function between
the filter for B-the spline trajectory generation and the robot
controlled at the joint level.

Final conclusions are reported in Section V.

II. B-SPLINE CURVES AND B-SPLINE FILTERS

FOR SET-POINT GENERATION

In a number of practical applications, the reference signal
for dynamical systems is defined by using the spline functions
that interpolate a set of desired via-points q�i , i = 0, . . . , n−1,
at time instants ti . By assuming a B-spline form of the
trajectory, i.e.,

q(t) =
n−1�

i=0

pi Bd
i (t), t0 ≤ t ≤ tn−1 (1)

where Bd
i (t) is a B-spline basis function of degree d and the

control points pi must be computed by imposing interpolation
conditions on the given data points q�i (see [6]). Note that,
as shown in Fig. 1, the control points alone determine the
geometric shape of the B-spline curve, which represents a sort
of smooth approximation of the so-called control polygon.

A. B-Spline Evaluation

In order to evaluate the B-spline (1) for a given value
t ∈ [t0, tn−1], it is necessary to compute the basis functions
Bd

i (t) via numerical procedures that are usually based on
recursion. In [7], uniform B-spline trajectories, i.e., B-splines
characterized by an equally spaced distribution of the knots
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Fig. 2. System composed by d mean filters and by a zero-order hold H0(s)
for the computation of continuous-time B-spline trajectories of degree d.

TABLE I

EXPRESSION OF THE FILTER Fd (z) FOR DIFFERENT VALUES OF d

ti , i.e., ti+1 − ti = T i = 0, . . . n − 2, have been generated by
feeding a chain of d (continuous-time) dynamic filters defined
as

M(s) = 1 − e−sT

T s

with the staircase signal p(t) obtained by maintaining the
value of each control point pi for the entire period i T ≤
t < (i + 1)T . See the scheme of Fig. 2 and the signals
shown in Fig. 3, where the generation of a cubic B-spline
is considered. Note that p(t) is obtained by applying a zero-
order hold to the train of impulses of amplitude pi . Moreover,
it is worth noticing that the output trajectory is delayed with
respect to the application of control points of mT s, where
m = (d + 1/2). For computer controlled systems equipped
with digital controllers with sampling period Ts , the B-spline
reference trajectory must be computed at time instants kTs .
It is therefore necessary to discretize the filter of Fig. 2. By
z-transforming the chain of d filters M(s) with a zero-order
hold, the system of Fig. 4 is obtained. Besides the initial zero-
order hold, the discrete-time filter Md (z) for the evaluation of
B-splines of degree d is composed by d moving average filters
and by the additional FIR filter Fd (z) defined as

Fd (z) = z−1 Qd−1(z)

d! (2)

with the polynomial

Qr (z) = cr,0 + cr,1z−1 + · · · + cr,r−1z−(r−1) + cr,r z−r (3)

whose coefficients can be computed in a recursive way as

cr,0 = cr,r = 1

cr,r−i = cr,i = cr−1,r−i−1 · (i + 1)+ cr−1,r−i · (r − i + 1)

i = 1, . . . ,
� r

2

�

being [·] the integer part operator.
In Table I, the expression of the FIR filter Fd (z) is reported

for several values of the B-spline degree d . Note that filter
Fd (z) can be written as Fd (z) = z−m F̃d (z), where F̃d (z) is a

Fig. 3. Control points sequence pi defining a cubic B-spline and related
reference trajectory q(t −mT ) obtained with the dynamic filter of Fig. 4 with
d = 3 (and accordingly, m = 2).

Fig. 4. System Md (z) composed by d moving average filters and by the
FIR filter Fd (z) defined in (2) for the generation of discrete-time B-spline
trajectories of degree d.

zero-phase filter, i.e., a filter characterized by arg{F̃d (e jωT )} =
0 ∀ω ∈ [0,∞).

The sequence pi of the control points is transformed in the
staircase sequence pk , with sampling time Ts , by means of an
upsampling operation with replication

pk = pi , k = i N, i N + 1, . . . , (i + 1)N − 1 (4)

where N denotes the ratio, supposed to be an integer, between
T and Ts . The samples of the B-spline sequence are then
generated by the filter denoted by Md (z) and coincide with
the value of the continuous-time trajectory at time instants
kT , i.e., qk = q(kT ) (see Fig. 5).

In the multidimensional case, that is, with vectorial control
points, the spline curve can be evaluated by considering a
filter, such as the one in Fig. 4, for each component of the
vector pi .

B. Control Points Computation

The control points pi are computed by imposing the interpo-
lation conditions on the via-points at the time instants defined
by knots that, for uniform B-spline, are multiples of the
fundamental period T , i.e.,

q(i T ) = q�i , i = 0, . . . , n − 1. (5)

If, for instance, the cubic B-splines are considered, (5) can be
written as

q(i T ) = 1

6
p�i−1 + 4

6
p�i + 1

6
p�i+1 = q�i , i = 0, . . . , n − 1.

(6)
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Fig. 5. Control points sequence pi defining a cubic B-spline and related
reference trajectory qk−m N with m = 2 obtained with the dynamic filter
of Fig. 4.

See [7] for more details. Since it is supposed that the motion
is repetitive, the so-called periodic splines must be considered,
i.e., spline functions characterized by the boundary conditions

q( j )(t0) = q( j )(tn−1), j = 1, . . . , d − 1. (7)

The conditions (6) and (7) lead to the linear system
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 · · · 0 1
1 4 1 0 · · · 0
0 1 4 1 0 · · · 0
...

. . .
...

0 · · · 0 1 4 1 0
0 · · · 0 1 4 1
1 0 · · · 0 1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p�0
p�1
p�2
...

p�n−3
p�n−2
p�n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 q�0
6 q�1
6 q�2
...

6 q�n−3
6 q�n−2
6 q�n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

whose solution provides the sequence of control points p�i ,
defining the interpolating B-spline. As well known, the defin-
ition of the interpolating B-spline is a global problem, which
can be performed only when the entire set of via-points is
provided. However, it is possible to approximate this global
mapping between via-points q�i and control points p�i within
a smaller set of data. In fact, the relation (6) between q�i and
p�i can be written as a (discrete-time) dynamic system,1 e.g.,

P(z N )

Q(z N )
= 6

z N + 4 + z−1
N

(9)

for the cubic B-splines. Although (9) represents an unstable
system, it can be used for computing the sequence p�i from
q�i by approximating its impulse response with a FIR filter
defined by

H (z N ) =
r�

n=−r

h(n) z−n
N (10)

1The expressions depending on z N are referred to the sampling time
T = N Ts .

Fig. 6. Set-point definition by means of a B-spline filter for a (controlled)
discrete-time plant G(z).

with the coefficients h(n) that, for d = 3, can be computed as

h(n) = 1 − α

1 + α
α|n| (11)

where α = −2 + √
3 is the stable pole of (9). Note that

the value of h(n) becomes extremely small as |n| grows.
This means that for the computation of the control points p�k ,
only the weights of the via-points close to q�k are important,
while, from a practical point of view, others can be neglected
with consequent small approximation errors. For instance,
the choice r = 4 guarantees an approximation error with
respect to the exact solution of (8) smaller than 0.5% (for
more details, see [8], [27]). It is worth noticing that from (11),
it descends that h(n) = h(−n); therefore, H (z N ) is a zero-
phase filter. Moreover, the filter H (z N ) is not causal, and it
is necessary to introduce a delay equal to r to make it feasible,
that is

H �(z N ) = z−r
N H (z N ) =

2r�

n=0

h(n − r) z−n
N . (12)

By feeding the filter H �(z N ) with the ordered sequence of
via-points q�i , it is possible to obtain online the control points
p�i , defining the interpolating B-spline at the price of a r
samples’ delay and a small approximation error.

Even if the cubic B-splines have been used throughout
this paper, the expressions of the algebraic system and the
FIR filter H (z N ) for off-line and online computation of the
control points defining quintic B-splines, i.e., d = 5, have been
reported in the Appendix because of their importance for the
applications.

III. TRACKING OF B-SPLINE CURVES AND ASYMPTOTIC

PERFECT TRACKING VIA ITERATIVE LEARNING

MODIFICATION OF THE CONTROL POINTS

The reference trajectory generated by the discrete B-spline
filter is then provided to the plant, as illustrated in Fig. 6.
Since this scheme has a standard feedforward cascade structure
without feedback control actions, with the only purpose of
generating arbitrarily complex trajectories for the plant G(z),
the capabilities of G(z) to track such inputs are implicitly
assumed. Therefore, the system G(z) is assumed to be a
controlled plant with a standard closed-loop structure whose
frequency response is characterized by a typical low-pass
behavior with a static gain as close as possible to unity. In
order to follow the input signal accurately, the bandwidth of
G(z) must be large enough [28] and, in particular, larger than
the maximum spectral components of the reference input.

A great advantage of using the linear filter Md (z) for gen-
erating B-spline curves consists in the straightforward spectral
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Fig. 7. Magnitude of the frequency response of the B-spline filter M̃d (z)
for d = 1, 2, 3 (N = 50).

characterization of the resulting trajectory. The magnitude of
the frequency response of the discrete-time B-spline generator
of Fig. 4, including the initial interpolator

M̃d (z) = 1 − z−N

1 − z−1 Md (z)

is given by

M̃d (e
jωTs ) = F̃d (e

jωTs )

⎡

⎣
sinc

�
ω
ω0

�

sinc
�
ω
ωs

�

⎤

⎦
d+1

e− jωmT , ω ≤ ωs

2

where sinc(·) denotes the normalized sinc function defined
as sinc(x) = (sin(πx)/πx), and ω0 = (2π/T ) and ωs =
(2π/Ts). Note that M̃d (e jωTs ) is characterized by a pure delay
of mT s. The zero-phase FIR filter F̃d (e jωTs ) has a standard
low-pass behavior; therefore, M̃d (e jωTs ) is a low-pass filter as
well, and its magnitude decreases rather quickly as ω grows,
especially for high values of d . In Fig. 7, the magnitude of the
frequency response of the B-spline filter M̃d (z) is shown for
d = 1, 3, 5. In case of cubic or quintic B-splines, which are
rather standard in the robotic field, the spectrum components
of the reference trajectory qr

k−mN at the output of this filter
are significant only in the frequency range [0, ω0], while the
reduction of the components for ω > ω0 is at least of two
order of magnitude (−40 dB). As a rule of thumb, in order
to obtain a good tracking performance, the controlled plant
G(z) must have a cutoff frequency ωc � ω0, and accordingly

G(e jωTs ) ≈ 1 for ω ≤ 2π

T
= ω0 
 ωc. (13)

However, even though (13) is valid, the tracking error e =
q − qr between plant output and reference B-spline trajectory
can be significant because of modeling errors and external
disturbances. For instance, in a robotic manipulator equipped
with a standard decentralized control, each motor is affected
by gravitational and dynamic coupling terms that are usually
neglected in the control design although they can significantly
deteriorate the tracking performance of the system [29].

A. Plug-In Repetitive Control

Since it is assumed that the structure of the internal con-
troller of the plant cannot be modified by the user, as in the

industrial robots, the proposed approach aims at improving
the tracking precision during repetitive tasks by modifying
the reference trajectory. As a B-spline curve is completely
determined by the position of its control points, the modi-
fication of the trajectory can be obtained by directly acting
on them, e.g., by means of the control scheme reported in
Fig. 8. This scheme is obtained by inserting the trajectory
generator, including the filter for control points computation,
and the controlled plant G(z) in a discrete-time control loop
that, on the basis of the interpolation error q̃i = q�i − qi ,
modifies in real time the control points sequence (denoted
by pr

i ) from the initial value p�i . It is a typical dual-rate
system with the feedback loop running at a sampling period
T , considerably higher than the period Ts of the trajectory
generator and the controlled plant G(z). According to internal
model principle [30], it is straightforward to conclude that the
presence, in the loop function, of the term

1

1 − z−n
N

(14)

assures the asymptotic perfect tracking of any periodic signal
with period n, and therefore, the tracking error at the given
via-points q�i asymptotically vanishes. This is a basic results
of RC in the discrete-time domain [31], but it requires that
the feedback loop is stable. In order to analyze the stability
of the scheme running with sampling period T , let us consider
the block-scheme representation of Fig. 9 obtained from the
control scheme of Fig. 8 after some formal manipulations.
The discrete-time transfer function [M̃d G]T (z N ) represents
the transfer function M̃d (z)G(z), modeling the trajectory
generator and the plant, resampled with the period T . Note that
this scheme has a quite standard RC structure whose stability
can be inferred by analyzing its characteristic equation, i.e.,

1 + z−n
N

1 − z−n
N

K p H (z N ) zm
N [M̃d G]T (z N ) = 0. (15)

By following the approach proposed in [31], it is possible
to see that the asymptotic stability of (15) is equivalent to
the stability of the feedback system with the loop-transfer
function:

L(z N ) = z−n
N


K p H (z N ) zm

N [M̃d G]T (z N )− 1
�
.

Therefore, by applying the Nyquist criterion, it descends that
all the poles of (15) are within the unit circle if and only if
the polar plot of L(e jωT ) for −(π/T ) ≤ ω ≤ (π/T ) does not
encircle or touch the critical points −1. This can be assured
by imposing that
��K p H (e jωT ) e jωmT [M̃d G]T (e jωT )− 1

�� < 1, ω ≤ π

T
.

(16)

The condition (16) requires that the complex function
K p H (e jωT ) e jωmT [M̃d G]T (e jωT ) lies within the circle of
unit radius centered in 1 + j0 ∀ω ≤ (π/T ) (see Fig. 10).
In nominal conditions, when the plant is able to track the

reference B-spline with negligible errors, and therefore, (13) is
met, the transfer function [M̃d G]T (z N ) can be approximated
as [M̃d G]T (z N ) ≈ M̃T

d (z N ). In this case, the transfer
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Fig. 8. Plug-in RC scheme based on discrete-time B-spline filter.

Fig. 9. Equivalent block-scheme representation of RC in Fig. 8.

Fig. 10. Stability region of RC for K p �Md (e
jωT ).

function M̃d (z) of the B-spline filter, resampled with period T ,
describes the relationship between control points and interpo-
lated via-points with, as already remarked, an additional delay
of mT s, i.e.,

M̃d (z N ) = Q(z N )

P(z N )
z−m

N .

On the other hand, the transfer function H (e jωT ) approxi-
mates the relationship between via-points and control points.
Therefore

H (e jωT ) e jωmT M̃T
d (e

jωT ) ≈ 1, ω ≤ π

T
(17)

and the condition (16) is valid for 0 < K p < 2. Note
that the value K p = 1 maximizes the robustness of the
RC scheme since in nominal conditions, the polar plot of
loop function L(e jωT ) is a point located at the center of
the stability region shown in Fig. 10. If the condition (13)
is not satisfied, and therefore, even in nominal conditions
(i.e., without external periodic disturbances), the tracking of
the reference trajectory is not satisfactory; it is necessary to
consider [M̃d G]T (z N ) ≈ M̃T

d (z N )�Md (z N ), where the
term �Md (z N ) takes into account the effects, which cannot
be neglected, of the plant G(z) on the reference input. Note
that �Md (z N ) �= GT (z N ) because of aliasing phenom-
ena. In fact, the downsampling operation does not commute,

that is, [M̃d G]T (z N ) �= M̃T
d (z N )GT (z N ) [32]. However,

�Md (z N ) is a direct consequence of G(z) and, therefore,
describes similar phenomena; for instance, if G(z) involves a
gain reduction/increase, also �Md (z N ) does involve a similar
gain variation, or if G(z) causes a phase delay, also�Md (z N )
is characterized by a negative phase shift.

In this case, condition (16) becomes

|K p �Md (e
jωT )− 1| < 1, ω ≤ π

T
. (18)

As shown in Fig. 10, where the stability region for the
function K p �Md (e jωT ) is shown, the gain of �Md (e jωT )
can be compensated by a proper choice of the free parameter
K p . Simple geometrical considerations lead to the following
stability condition:

0 < K p <
2 cos( � �Md (e jωT ))

|�Md (e jωT )| , ∀ω ≤ π

T
(19)

where � denotes the function that returns the phase angle of
a complex number. Obviously, (19) can be satisfied only if
−π/2 < � �Md (e jωT ) < π/2. If the phase shift due to the
plant exceeds ±π/2, the stability of the RC cannot be assured,
but a good feedback controller and a proper choice of the
trajectory (in particular, a proper choice of the time-distance T
between the via-points) should, ever, prevent this possibility.
Since, in an industrial robotic system, the controller cannot
be (easily) modified, the stability condition determines the
minimum duration of the B-spline trajectory, which depends
on the minimum allowable value of T . In particular, T must
be adapted to the controller bandwidth in order to verify (13).

B. Iterative Learning Analysis of the
Proposed Control Scheme

In order to understand the effects of the control scheme of
Fig. 8 on the resulting reference trajectory, an analysis based
on the iterative learning perspective can be useful. By a simple
inspection of the scheme, it descends that the control points
pi defining the spline trajectory are updated according to the
law

pr
i, j = pr

i, j−1 + K p H (z N )q̃i−m, j−1 (20)

where the index j denotes the current cycle and z N is
the time-shift operator. Therefore, the i th control points are
modified on the basis of the error q̃i−m between the desired
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Fig. 11. Example of (a) tracking of a 2-D B-spline trajectory and (b) tra-
jectory modification via ILC mechanism. Back solid line is the reference
trajectory qr (t), while the red solid line is the actual trajectory q(t) performed
by the plant.

position q�i−m and the actual position qi−m (delayed by m
samples), transformed in an error in the “control points’ space”
by means of the filter H (z N ). By combining (20) with the
I/O relationship of the plant with the B-spline generator, i.e.,

qi−m, j = [M̃d G]T (q) pr
i, j

it is possible to derive the equation of the iteration error
dynamics, which, in the z-domain, is

Q̃ j (z N ) = [1 − [M̃d G]T (z N )K p H (z N )]Q̃ j−1(z N )

(21)

where Q̃ j (z N ) = ZT {q̃i, j } is the Z transform of the sequence
obtained from q̃ j (t) with sampling time T . Therefore, the ILC
system is stable, and the error q̃i, j asymptotically vanishes
only if [1 − [M̃d G]T (z N )K p H (z N )] is a contraction map-
ping [33], that is

sup
ω∈[−π/T ,π/T ]

|1 − K p H (e jωT ) e jωmT [M̃d G]T (e jωT )| < 1.

(22)

Note that stability condition (22) is equivalent to (16), but (21),
which leads to (22), provides some additional information,
e.g., about the transient. If the condition (17) is satisfied,

Fig. 12. (a) Plug-in RC scheme and (b) particle swarm-based repetitive
spline compensator.

the choice K p = 1 guarantees that the error q̃i, j converges
to zero after one single cycle for any value of the initial error
q̃i,0 [34], while smaller values of K p can aid to satisfy (22),
or equivalently (16), but, on the other hand, they cause a slower
convergence of the error to zero.

In Fig. 11, the mechanism is illustrated with an example
based on a the 2-D B-spline trajectory. The initial tracking
error of the plant with its internal control has been assumed
very large only for the sake of clarity [see Fig. 11(a)]. For the
same reason, a very small value of K p has been considered.
In this way, the asymptotic approach of the output trajectory
to the reference trajectory results very slow, and it is possible
to appreciate the modification of trajectory and via-points,
as highlighted in Fig. 11(b).

C. Comparative Evaluation of the Proposed Control Scheme

In order to better highlight the advantages of the proposed
controller, its performances have been compared with those of
well-settled RC-based techniques that share the same design
philosophy, namely, the possibility to be applied to controlled
plants as a plug-in module that does not require modifications
on the basic off-the-shelf controller. In particular, the so-
called plug-in RC [35]–[38], shown in Fig. 12(a), has been
considered. In addition, the scheme recently proposed in [20],
where an additive signal, parameterized as a uniform B-spline,
is added to the given reference trajectory, has been taken into
account [see Fig. 12(b)]. In this latter case, the controller
has not only a plug-in structure but it is also based on
the iterative modification of a B-spline function. The main
difference with respect to the approach proposed in this paper
is that the modification of the B-spline is obtained by using
a Particle Swarm Optimizer (PSO) applied to a cost function
that depends on the tracking error and on the control signal.

The plant considered in the simulations is the servo drive
with a standard current/velocity/position control architecture
used to evaluate the PSO repetitive spline compensator in [20]
(the model and the controller are available in [39]), and also
the reference trajectory comes from the same paper. Since the
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Fig. 13. (a) Reference trajectory and tracking error without RC. Tracking
error with (b) B-spline-based RC—iteration #10, (c) plug-in RC—iteration
#10, and (d) PSO-based RC—iteration #100.

proposed control scheme is based on a B-spline reference
trajectory interpolating a set of via-points, the trajectory in [20]
has been uniformly sampled in order to obtain the via-points.
In Fig. 13(a), the trajectory is shown along with the tracking
error without any RC mechanism. The duration of a single
cycle is Ttot = 0.5 s, and the control points are 50. The
sampling time of the servo drive is Ts = 0.1 ms, while the
knot span T is 0.01s. Accordingly, N = 100.

The application of the B-spline-based RC proposed in
this paper (with K p = 0.5) leads to a quick reduction of
the tracking error, as highlighted in Fig. 14(a). After nine
cycles, the error q̃i at the knots has practically vanished [see
Fig. 13(b)]. In general, the overall tracking error has been
considerably reduced. Similar results are obtained with the
plug-in RC, working at Ts (therefore, N times faster than the
B-spline-based RC), see Figs. 13(c) and 14(b). In this case,
the final level of the error is influenced by the choice of the
filter Q(z), which has been assumed as a standard low-pass
filter, while the decay rate of the error depends on the filter
L(z), which in the simulation, is a simple gain equal to K p .
Therefore, besides the lower sampling rate, the integration of
the B-spline filter in the RC loop simplifies the tuning of the
controller, because the free parameters are only K p and T ,
and guarantees that the tracking errors goes exactly to zero
(at least at the knots) since the presence of the filter Q(z) is
not necessary for the stability of the control loop.

The PSO-based RC modifies the B-spline curve on the basis
of the overall tracking error (and not only at the knots), and
for this reason, it exhibits a higher robustness with respect to
noise and aperiodic disturbances. However, the tracking error
converges to zero very slowly although the (numerous) free
parameters that characterize the scheme have been selected by
the authors and are therefore supposed to be optimized. From
Figs. 13(d) and 14(c), it is quite evident that after 99 iterations,

Fig. 14. Comparison of the error decay obtained with (a) B-spline-based
RC, (b) plug-in RC, and (c) PSO-based RC.

the error level is higher than the error level of the B-spline-
based RC after nine cycles. Finally, from a computational point
of view, the PSO-based RC is rather demanding, because of
the optimization procedure, the spline computation, and so on,
and its implementation may be unpractical. On the contrary,
the computational burden of proposed B-spline-based scheme
is very low, as it can be roughly assessed by considering the
time required by a 5-s simulation, namely, tsim = 1.201383 s
for the B-spline-based RC, tsim = 2.679974 s for the plug-in
RC, and tsim = 33.3352 s for the PSO-based RC.

IV. APPLICATION OF THE RC SCHEME TO AN

INDUSTRIAL MANIPULATOR

In order to show the importance for applications of the
proposed approach, an extensive experimental activity has
been performed. In a real scenario involving an industrial
manipulator, the proposed control can be used according the
following two different schemes and purposes.

1) The iterative modification of the robot trajectories
defined in the joint space is obtained on the basis of the
measurements provided by the proprioceptive sensors of
the robot, i.e., motors encoders.

2) The robot trajectories are directly defined in the
workspace and are modified on the basis of an external
sensor that detects the position of the end-effector in the
3-D space, i.e., an RGB-D camera [40].

In case 1), the goal of the RC is improving the robot precision
by compensating the errors that the internal controller of the
robot is not able to correct.
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Fig. 15. Reference trajectory interpolating a set of via-points disposed on the
plane yz used to experimentally validate the proposed control scheme both
in the robot joint space and in the robot workspace.

Fig. 16. Experimental setup based on a Comau Smart5 Six industrial
manipulator.

In case 2), the external sensor allows the compensation of
errors that are not sensed by the motors encoders, e.g., position
errors due to the elasticity of the transmission chain or to
the flexibility of the links, or errors due to the misalignments
between the reference frame of the robot base and the refer-
ence frame, in which the desired trajectory is defined. Note that
the proposed control scheme based on a low-rate outer loop is
very attractive in this second scenario since the integration of
many external sensors may be affected by some bottlenecks,
due to the intrinsic properties of the sensor itself, such as in
the case of cameras, or to the time required for elaboration and
data transmission, which limits the minimum sampling time.

In Fig. 15, the 60 via-points and the interpolating workspace
trajectory used in all the experiments reported in this section
are shown. Obviously, in the scenario a, based on joint-space
trajectories, the reference trajectory is built by first applying
the inverse kinematics function of manipulator to the given
via-points.

A. Scenario A

In order to experimentally evaluate the proposed method,
the setup shown in Fig. 16 has been arranged. The sys-
tem is composed by a Comau Smart5 Six industrial robotic
arm, a C4G Controller, and a standard PC with an Intel
Core 2 Duo 2.4-GHz processor. The Comau Smart5 Six is
a 6 DOF robot with anthropomorphic structure with a payload

Fig. 17. Tracking performance of the third joint during a trajectory cycle
(a) without and (b) with RC (iteration #6).

Fig. 18. Response of the robotic system when the RC is activated (t = 0).
Errors at sampling instants T are highlighted in blue line, while the red line
denotes the overall tracking error.

of 6 Kg. The robot is driven by the C4G Controller that
performs both the position/velocity control and the power stage
management with current control of each joint. Moreover,
the C4G controller implements a software option called “C4G
open” that allows the integration of the robot control unit with
an external personal computer in order to develop a complex
control system at a higher hierarchical level. The C4G Open
architecture is based on a real-time communication on the
Ethernet network between the controller and the PC, equipped
with the real-time operating system RTAI-Linux on a Ubuntu
NATTY distribution, which allows the trajectory generator/RC
loop to run with a sampling period Ts = 1 ms. For the
design of the control scheme and of trajectory generator,
the MATLAB/Simulink/Real-Time Workshop environment has
been used. The knot span of the uniform trajectory has been
set to T = 0.5 s, and therefore, its total duration is Ttot = 30 s.

For the sake of clarity, the behavior of only one robotic
joint (the third) has been initially analyzed. In Fig. 17(a),
the performance of the original robotic system, without RC,
is shown. As can be seen, the third joint is affected by a
quite evident tracking error due to both the dynamic coupling
with the other joints and the 3-Kg payload represented by the
UBHand IV robotic hand [41].

In Fig. 18, the tracking performance of the third joint is
presented when the RC is switched ON. It is worth noticing
that, as soon as the RC is activated, the error q̃i at the given
via-points q�i starts decreasing and vanishes in a few iterations.
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Fig. 19. Error decay for each joint of the robot Comau Smart5 Six during
the execution of the trajectory shown in Fig. 15 after the activation of the RC
mechanism (t = 0).

More generally, the entire error between the planned B-spline
and curve tracked by the robot considerably decreases.
This reduction is quite evident if the tracking error obtained
without RC during a trajectory period, shown in Fig. 17(a),
is compared with the error obtained after application of the
controller, see Fig. 17(b), where a detail of the trajectory
tracking with RC (after five cycles) is shown. In particular,
a reduction of the maximum tracking error of about 80% can
be observed, while the error at knots goes practically to zero.

Similar considerations are valid for all the robot joints,
as shown in Fig. 19, where the errors obtained during the
tracking of the trajectory in Fig. 15, with the RC mechanism
activated, are reported.

B. Scenario B

In this scenario, the cyclic motion of Fig. 15, directly
defined in the robot workspace by means of a uniform B-spline
interpolating a set of via-points, is considered. In addition,
an external sensor, which is a simple vision system based
on the ASUS Xtion PRO Live RGB-D camera, has been

Fig. 20. Experimental setup based on the Comau Smart5 Six industrial
manipulator with an external RGB-D sensor.

Fig. 21. View of the RGB-D camera and desired trajectory.

integrated into the robotic setup described in Section IV-A,
see Fig. 20. The camera, which is disposed in front of the
robot, detects the position of a marker located at the robot
end-effector with a resolution of about 1 mm. Note that the
precision of the camera, which is a low-cost device, is lower
than the precision of the industrial robot (whose repeatability
is 0.05 mm), but the proposed experiment is only a proof of
concept aiming at demonstrating how real applications can
benefit from the RC scheme. Besides the poor resolution of
the camera and the tracking error that affects the robot with
the original controller (which can be supposed periodic along
a cyclic trajectory), the main source of error is nonperfect
calibration of the camera. In fact, the position and the angular
orientation of the camera around its visual axis are certainly
affected by an error, and in this application, only a rough
calibration has been performed. Note that, being the calibration
errors constant, they can be considered periodic.

For the sake of simplicity, a fixed orientation of the robot
end-effector has been considered, see Fig. 21, where the
view of the camera along with the desired trajectory is
reported. In the scenario, the via-points are 6-D vectors q�i =
[x�i , y�i , z�i , ϕ

�
i , θ

�
i , ψ

�
i ]T , where parameters ϕ�i , θ�i , and ψ�i are

a minimal representation of the orientation, such as Roll–
Pitch–Yaw angles. As a consequence, the control points and
the cyclic B-spline trajectory are 6-D too, and therefore, it is
necessary to implement a vectorial version of the trajectory
generator and, more specifically, of the RC scheme. Moreover,
since the reference trajectory is defined in the robot workspace
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Fig. 22. RC scheme for tracking uniform B-spline trajectories defined in the workspace of a robot manipulator.

Fig. 23. Error decay in the y- and z-directions after the activation of the
RC mechanism (t = 0).

and the RC mechanism is performed in the workspace as
well, while the robot is controlled at the joint level, the initial
RC scheme shown in Fig. 8 has been slightly modified in
order to take into account the kinematic transformations of
the manipulator. In Fig. 22, the RC scheme based on the
modification of a uniform B-spline reference trajectory defined
in the robot manipulator workspace is shown. Note that the
only requirement for the success of the RC is that the robot is
able to track the planned trajectory in nominal conditions and
no additional hypotheses are necessary in order to guarantee
the stability of the loop. The gain K p is assumed equal to
the identity matrix, i.e., K p = I6, and T = 1s (Ttot = 60s).
In Fig. 23, the error decay along the y- and z-axes, when
the RC is activated, is shown. In few cycles, the RC is
able to considerably reduce the error at the via-points. In the
example, despite the noise due to the position estimation with
the camera, the error is reduced of one order of magnitude.
In order to better appreciate the improvement caused by the
application of the RC, a single trajectory cycle along the y-axis
with and without RC is considered in Fig. 24. By comparing
the tracking errors, it is clear that the error is reduced not only
at the knots i T but also during the intersamples.

Finally, in Fig. 25, the modification of the geometric
reference path qr (t) due to the RC mechanism has been
highlighted, by comparing the shape of the reference trajectory
qr (t) and the actual trajectory q(t), before and after the
application of the RC. As already remarked in Section III-B,

Fig. 24. Tracking performance of the system along the y-axis during a
trajectory cycle (a) without and (b) with RC (iteration #6).

Fig. 25. yz planar view of the tracking performance of the system during a
trajectory cycle (a) without and (b) with RC (iteration #6).

the variation of the control points with respect to their initial
value obtained by interpolating the desired via-points produces
a deviation of the reference trajectory that compensates peri-
odic errors affecting the system, which, in this way, is able to
follow the desired path with an improved precision.

V. CONCLUSION

In this paper, motion planning and reactive control have
been integrated in order to obtain a perfect tracking of a
desired set of via-points. By considering the tasks performed
cyclically, which are quite common in the industrial and robot-
ics field, a B-spline trajectory-generation algorithm has been
enhanced with an RC-type mechanism that modifies in real
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time the control points in order to nullify the tracking error at
the desired points. The effectiveness of the proposed approach
has been demonstrated both analytically and experimentally.
In particular, the tests performed on an industrial manipulator,
both in the joint space and in the workspace, have shown that
this scheme can be used to enhance the performance of the
original position controller of the robot without modification of
the controller itself but only by implementing a low-rate outer
control loop that modifies the reference trajectory provided
to the manipulator. With respect to existing RC schemes, the
B-spline-based controller offers the following advantages for
practical applications.

1) Straightforward scalability for multidimensional ser-
vosystems.

2) Low sampling rate.
3) Simple implementation with the need of tuning only the

gain K p (generally equal to 1).
4) Stability conditions easily met, even in the presence of

nonlinear elements, e.g., the inverse kinematics function
that has been included in the robot workspace RC
scheme.

The fact that the perfect tracking is guaranteed only at
via-points does not seem a limitation since the reference
trajectory is generally defined by these via-points. Moreover,
it is possible to show that the reduction of the error at the via-
points also implies a reduction of the overall approximation
error of the curve. In general, the so-called intersample error
depends on the capability of the original plant to track the
given curve and, accordingly, on the period T between knots
and on the spline degree d (see [8] for more details).

Finally, the proposed approach can be used to refine the
computation of the control points for a given motion trajectory
in order to compensate for cyclic disturbances that characterize
the plant. After an initial “training,” the modified control points
pr

i that take into account the dynamic behavior of the plant
can be applied without the adaptation mechanism in lieu of the
theoretical values p�i , computed on the basis of mere geometric
interpolation conditions.

APPENDIX

Control Points Computation for Quintic B-Spline Trajec-
tories For quintic B-splines, i.e., d = 5, the system for the
off-line computation of control points p� from the via-points
q� is

A p� = q�

with

A = 1

120

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

66 26 1 0 · · · 0 1 26
26 66 26 1 0 · · · 0 1
1 26 66 26 1 · · · 0
0 1 26 66 26 1
...

. . .
. . .

. . .
...

1 26 66 26 1 0
0 · · · 0 1 26 66 26 1
1 0 · · · 0 1 26 66 26

26 1 0 · · · 0 1 26 66

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The coefficients h(n) of the FIR filter H (z N ) for the online
computation of the control points are

h(n) = c1 α
|n|
1 + c2 α

|n|
2

where α1 and α2 are the stable poles of

P(z N )

Q(z N )
= 120

z2
N + 26z N + 66 + 26z−1

N + z−2
N

defined by

αi = 1

2
(2 + ui +

�
4 ui + u2

i ), i = 1, 2

with ui = −15 ± √
105, and the coefficients ci are

c1 = α1(−1 + α1)(−1 + α2)
2

(α1 − α2)(−1 + α1α2)(1 + α1)

c2 = α2(−1 + α2)(−1 + α1)
2

(α2 − α1)(−1 + α1α2)(1 + α2)
.
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